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Abstract

The paper presents the neuro-fuzzy approach to the recognition and classi£cation of heart rhythms

on the basis of ECG waveforms. The important part in recognition ful£lls the Hermite characteri-

zation of the QRS complexes. The Hermite coef£cients serve as the features of the process. These

features are applied to the fuzzy neural network for the recognition. The results of numerical exper-

iments have con£rmed very good performance of such solution.

Index Terms

Neurofuzzy networks, waveform characterization and measurement, Hermite function expan-

sion, electrocardiography, arrhythmia recognition and classi£cation

I. INTRODUCTION

The problem of on-line heart beat type recognition on the basis of the registered ECG wave-

forms belongs to the dif£cult measurement problems, since the beats differ signi£cantly even for

the same type and for the same patient. The ECG waveforms may differ for the same patient to

such extend that they are unlike to each other and at the same time alike for different types of beats.

This is the main reason that the beat classi£er, performing well on the training data behaves badly,

when presented with different patients ECG waveforms. Although several algorithms have been

already developed, their ef£ciency is still not satisfactory [2], [3], [4], [5], [6], [7].
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In this paper we will present the new approach to heart beat recognition that is less sensitive

to the morphological variation of the ECG. The paper proposes the new solution of the problem by

combining two techniques:

• characterization of the QRS complex of ECG by Hermite polynomials and using the coef£-

cients of Hermite kernel expansion as the features of the process

• application of the modi£ed neuro-fuzzy TSK network for ECG pattern recognition and clas-

si£cation.

Instead of the original waveform, we will rely on its description using coef£cients of Hermite

expansion. These coef£cients are used as the input signals to the neuro-fuzzy network, ful£lling the

role of recognition and classi£cation system. We have applied the modi£ed structure of the TSK

network. Such fuzzy neural network solution is more tolerant to the noise and to the morphological

changes of the ECG characteristics. The results of the numerical investigations are presented and

discussed.

II. ECG CHARACTERIZATION USING HERMITE FUNCTION EXPANSION

The ECG is the electrical manifestation of the contractile activity of the heart and can be

recorded fairly easily with the surface, noninvasive electrodes placed on the limbs and chest. Fig.

1 shows the typical ECG signal with three indicated waves: the P, QRS and T one. The P wave

is the result of slow-moving depolarization (contraction) of the atria. This is the low-amplitude

wave of 0.1 - 0.2mV and duration of 60 - 120ms. The wave of stimulus spreads rapidly from the

apex of the heart upwards, causing rapid depolarization (contraction) of the ventricles. This results

in the QRS complex of the ECG, a sharp biphasic or triphasic wave of about 1mV amplitude and

approximately 80 - 100ms duration. Ventricular muscle cells have a relatively long action potential

duration of 300 - 350ms. The plateau part of action potential of about 100 - 120ms after the QRS

is known as the ST segment. The repolarization (relaxation) of the ventricles causes the slow T
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wave with an amplitude of 0.1 - 0.3mV and duration of 100 - 120ms. Between T and P waves there

is a relatively long plateau part of small amplitude known as TP segment.

Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia. Fig. 2

shows the real recorded ECG signals corresponding to normal beats (N) and premature ventricular

ectopic beat (V). We observe the change of the amplitude and duration as well as the shape of

rhythms not only between different beat types but also within the rhythms belonging to the same

class.

Different types of abnormal rhythm result from the variations in the site and frequency of the

impuls formation, caused by some diseases. The ECG arrhythmia waveforms differ usually with

the amplitude and duration of beats. Especially important are QRS complex changes. Hence the

ECG, especially its QRS complex, is very important signal, useful in heart-rate monitoring and the

diagnosis of cardiovascular diseases.

The proposed system for on-line ECG beat recognition by using proposed approach is shown

in Fig. 3. It consists of the following blocks: the ECG registration, QRS detection and Hermite

basis functions coef£cient extraction, delivering these coef£cients as the features to the input of

the neural network, performing the role of classi£er.

The main idea of expansion of the ECG signal into Hermite basis functions [7] exploits the

similarity of the shapes of these polynomials and QRS complexes of the ECG curves. The coef£-

cients of Hermite expansion are used as the features characterizing the shape of ECG beat.

Let us denote by x(t) the ECG curve. The expansion of it into Hermite series may be presented

in the following way

x(t) =
N−1∑
n=0

anφn(t, σ) (1)

where an (n = 0, 1, 2, ..., N − 1) are the expansion coef£cients while φn(t, σ) is the Hermite basis



ON-LINE HEART BEAT RECOGNITION USING HERMITE POLYNOMIALS AND NEURO-FUZZY NETWORK 4

function de£ned as

φn(t, σ) =
1√

σ2nn!
√

π
e−t2/2σ2

Hn(t/σ) (2)

The functions Hn(t/σ) are the Hermite polynomials. With Ho(x) = 1 and H1(x) = 2x, the

Hermite polynomials are de£ned recursively by

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x) (3)

For example H2(x) = 4x2−2, H3(x) = 8x3−12x, etc. Fig. 4 presents the Hermite basis functions

φn(t, σ) as a function of time for different orders: n = 0 (Fig. 4a), n = 1 (Fig. 4b), n = 3 (Fig.

4c) and n = 14 (Fig. 4d).

The higher is the order of the function, the higher its frequency of changes within time domain

and the better its capability to reconstruct the quick changes of the ECG paradigms.

To illustrate the way, in which Hermite polynomials approximate the ECG curve, let us present

the QRS segment of ECG signal as 91 data points around the R peak (45 points before and 45 ones

after). At the data sample rate of 360 Hz, this gives a window of 250 ms, which is long enough to

cover most of QRS signals. They have been also expanded by adding 45 zeros signals to each ends

of the beats. After that all ECG signals are normalized by linear scaling to the range of [-1,1] and

substracting the mean level of the £rst and the last data points. An example of normalized QRS

complex of ECG signal is presented in Fig. 5a.

The modi£ed QRS complex is decomposed onto a linear combination of Hermite basis func-

tions. In the experiments the width σ has been set up to such value, that almost half of the Hermite

basis function signal values are close to 0 in the considered range. The expansion coef£cients ai

are obtained by minimizing the sum squared error, de£ned in the following way

E =‖ x(t) −
N−1∑
n=0

anφn(t, σ) ‖2
2 (4)

This error function represents the set of linear equations versus an solved in practice by using SVD

decomposition and pseudo-inverse technique [12].
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Different numbers of Hermite basis functions have been used to extract the features of QRS

complexes. Fig. 5 presents the results of approximation of chosen ECG waveform by applying 6

(Fig. 5b), 9 (Fig. 5c) and 15 (Fig. 5d) £rst Hermite basis functions.

As it is seen, at 15 functions we got quite good reconstruction of the details of the curve,

satisfactory from the point of view of representation of the main features of this curve.

Another problem is the representability of the Hermite coef£cients for different types of beats.

Good features should be stable for the same beat type and differ signi£cantly for different beats.

Close analysis of the distribution of the coef£cient values for different rhythm types have revealed,

that some of them are better and some less suited for this task. The exemplary distribution of a0

and a4 coef£cients for different rhythms are presented in Fig. 6a and 6b, respectively. The beat

types under investigation included: the premature ventricular ectopic beat (V), the left bundle

branch block beat (L), the right bundle branch block beat (R), the atrial premature beat (A), the

ventricular ¤atter wave (I) and the ventricular escape beat (E). It is seen that E and R arrhythmias

are very well separated between each other and from the others. The values of coef£cients a0 and

a4 for these rhythm types are stable and of low variance for all investigated samples. However

the other arrhythmia types are characterized by their coef£cient values of higher variance. At the

same time they all occupy similar range of values. The other coef£cients an for n = 0, 1, 2, ..., 14

not shown here, represent different distribution of their values for different rhythm types, generally

well separating all of them. Collecting together their separation capabilities we get the set of

features capable of separating all rhythm types from each other with good ef£ciency.

As a result of such investigation we have decided to represent each QRS complex of ECG

waveform by 15 coef£cients ai (i = 0, 1, ..., 14) of Hermite basis function expansion. All these

coef£cients form the feature vector x put to the input of the neural classi£er.

Additionally we have also extracted 2 additional parameters representing the duration of the

signal (time domain representation), i.e. the RR interval and the average RR interval of 10 last
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beats. Both are had been then normalized to [0,1] range. In this way the £nal feature vector x of

each QRS complex contains 17 elements: 15 Hermite coef£cients and 2 time domain representa-

tion parameters.

III. FUZZY NEURAL NETWORK CLASSIFIER

As the system recognizing the heart rhythm type and classifying the ECG waveform signals

on the basis of the features described in the previous section, we have applied the modi£ed neuro-

fuzzy Takagi-Sugeno-Kang (TSK) network of the structure, suited for large scale problem. The

fuzzy neural network has been chosen for this task because it is better suited for the representation

of the inexact and fuzzy nature of the heart beat variability.

Let us consider the multi-port system of N inputs characterized by the vector x and one output,

to be modelled as the fuzzy system of Takagi-Sugeno-Kang type [11]. This system implements in

general the inference rules, that can be stated in general vector form as follows [9], [11]

if x is A then y = f(x) (5)

where x = [x1, x2, ..., xN ]T and f(x) is the TSK function

f(x) = p0 +
N∑

i=1

pixi (6)

usually assumed as a crisp linear function of coef£cients p0, p1, ..., pN adjusted at the learning

process.

The premise if x is A in TSK inference system is implemented as the fuzzi£er, de£ned for

each variable xi as the gaussian or bell function. Both functions are fully de£ned by their centers

and spread values.

It is well known that TSK neuro-fuzzy inference system can serve as the universal approxima-

tor of the data with the arbitrary accuracy [11]. The most important point in the designing stage of
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the network is creation of the inference rules. The standard TSK system operating on the combi-

nation of the membership functions in each variable is inef£cient at many inputs, since it results in

extremely large number of learning rules, most often empty, i.e., operating in the regions deprived

of data. We have solved this problem by applying the fuzzy clusterization of data and associating

each cluster with one independent inference rule. The center of the cluster is automatically the

center of the premise part of the rule.

The most ef£cient way of fuzzy clusterization is the application of Gustafson-Kessel (GK)

algorithm [10]. It operates with two parameters of the cluster: the center vector ci = [ci1, ..., ciN ]T

and the cluster covariance matrix Fi ∈ RN×N . Both parameters are adapted in the learning proce-

dure [10]. The center of the cluster denotes the point of the highest membership value of the rule,

associated with the cluster. The covariance matrix Fi introduces the scaling of the input variables

and is responsible for shaping of the cluster. Fig. 7 presents the typical representation of the data

obtained by GK approach. The ellipses denote the lines of the same membership function val-

ues to the appropriate cluster. The shapes of the obtained clusters are elongated and are perfectly

adjusted to the distribution of data (the dots). Observe that all clusters obtained as the result of

self-organization, correspond only to the regions, where the data exist.

The distance between the data point x and the center ci is described now by using the scaled

Euclidean measure

d2(x, ci) = (x − ci)
T N

√
det(Fi)F

−1
i (x − ci) (7)

On the basis of this distance de£nition the £ring strength of ith rule is determined in the following

way [11]

µi(x) =
1

∑M
k=1

(
d(x,ci)
d(x,ck)

)2/(m−1)
(8)

where M is the number of clusters (rules) and m is the exponent coef£cient (most often m = 2).
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The TSK approximation function can be now described by []

y(x) =

∑M
i=1 µi(x)

[
pi0 +

∑N
j=1 pijxj

]

∑M
i=1 µi(x)

(9)

The denominator of this expression ful£lls the role of the normalizing term. Observe that this term

can be included in the TSK parameters

pij ← pij∑M
r=1 µr(x)

(10)

Hence the £nal form of the approximation function of TSK type can be written as follows

y(x) =
M∑
i=1

µi(x)


pi0 +

N∑
j=1

pijxj


 (11)

The neural network structure, corresponding to this simpli£ed equation is shown in Fig. 8.

At proper selection of the centers ci and the covariance matrices Fi resulting from the self-

organization stage, the equation (11) represents the linear equation of TSK parameters pij . At p

learning data points we get in this way the system of p linear equations of the variables pij . The

determination of these variables can be done in one step by using the SVD algorithm and the

pseudo-inverse technique [12].

Note, that although the considerations given above correspond to one output system, we can

easily extend their results to the multi outputs by writing similar set of equations for each output.

Only TSK parameters change from output to output. The premise parameters are the same for all

channels.

IV. THE RESULTS OF NUMERICAL EXPERIMENTS

In the numerical experiments of the recognition of the ECG beat types we have used many

different patients taken from MIT/BIH arrhythmia database [1] representing different arrhythmias

and the normal (N) sinusoidal rhythm. Fig. 9 presents the set of rhythms typical for N type. Great

variability of their morphology can be observed.
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Six types of arrhythmia taken from the MIT/BIH arrhythmia database [1] have been consid-

ered in the investigations. They include the following types: V, L, R, A, I and E introduced in

section II. Fig. 10 presents the exemplary set of original QRS complexes typical for these arrhyth-

mias. As it is seen from the £gure there is a great variation of signal morphology among the same

type of beats belonging to chosen arrhythmias.

All original waveforms belonging to any type of arrhythmia and normal sinus rhythm have

been represented by the appropriately normalized Hermite coef£cients, forming the feature vectors.

The information contained in the feature vectors of ECG beats has been applied to the input of the

modi£ed neuro-fuzzy TSK network, which serves as the recognition and classi£cation system. The

applied neuro-fuzzy network contained 17 input nodes (equal to the number of the features of the

ECG waveform) and 7 outputs, equal to the number of beat types. Each output represents one type

of arrhythmia or normal beat. In the case of presenting the beat type other than the considered,

the £nal classi£cation result is dependent on the level of maximum output signal. If it is below

some threshold, all neurons will respond with null. The number of clusters used in the de£nition

of inference rules was found after series of experiments and was equal 21, and this number of

inference rules has been applied for each beat type recognition.

The set of the input vectors xi represents the QRS complexes of the individual beats of many

patients, representing different types of beats and transformed according to the procedure described

in section II.

The ECG beats taking part in classi£cation have been splitted into two groups: one used only

in learning and the separate one used only in the testing mode. The learning set contained 3611

pairs (the input vector x containing the features representing beats and the destination vector d

representing the code of the class) distributed among different patients and different types of beats.

The testing set was formed of the other 3668 pairs, corresponding to different beat types. Among

them was the normal sinusoidal rhythm (N) and 6 types of arrhythmias mentioned above: L, R, A,
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V, I and E. Due to varied number of beats available in the MIT database [1] the number of patterns

of different beat types taking part in experiments was changing. Especially scarce was the data

base of I and E types, so the numbers of these beats were the smallest ones.

The learning process of the neuro-fuzzy network has been performed by applying the GK

algorithm for the self-organization to set the positions of the cluster centers ci and to determine the

covariance matrices Fi. After this step all centers ci and matrices Fi have been frozen and TSK

parameters pij adapted using SVD decomposition.

After learning, the network was ready for the retrieval mode of operation, in which only the

feature vector x is applied to the input of the system. This excitation activates the output neurons

of the network.

The activities of output neurons indicate the membership of the individual beats to the ap-

propriate class. The actual output signals of the neurons are rounded to only two levels: one

(indicating the membership to the appropriate class) and zero (lack of membership to this class).

The obtained results of recognition and classi£cation for different beats are presented in table 1 for

the learning and the testing data. The ef£ciency of recognition of different beat types is varied from

1% to 11% and re¤ects the diverse complexity of the recognition task. As it is seen the average

misclassi£cation rate in both learning and testing set is limited, and the ef£ciency of recognition in

the testing mode is above 96%. Observe that the performance of the neural classi£er on the testing

data is only slightly worse than on the learning set.

It is interesting to compare our results to the others, presented in scienti£c journals. For

example the data classi£ed by fuzzy hybrid network and HOS used as the feature description [8]

have produced the overall error of 4.4%. The application of multilayer perceptron (MLP) and the

features based on time domain representation resulted in the error of 10% for 2 heart beat types

and 15.5% for 13 beat types [2]. The application of SOM and SVD characterization for 4 beat

types resulted in 7.8% error [3], while MLP and Fourier features for 3 beat types have reduced the
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recognition error to 2% [5].

However it should be noted that patients and rhythms selected in all compared experiments

were different. Hence fair comparison of the methods and their results is very dif£cult since the

morphology of heart beats is changing from patient to patient and may present the additional dif£-

culties in recognition process. This is especially important, since the beats can differ signi£cantly

not only among different patients, but also within the same one. Hence the results of such compar-

ison should be treated very carefully.

V. CONCLUSIONS

The paper has presented the application of Hermite basis function expansion of the QRS com-

plexes of ECG waveforms and modi£ed TSK neuro-fuzzy network for heart beat recognition and

classi£cation. The Hermite coef£cient characterization delivers stable features, relatively insen-

sitive to the morphology variations of the ECG waveforms. Combining these features with good

performance of the neuro-fuzzy classi£er have produced the accurate results of beat recognition,

competitive to the already known results.
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Fig. 1. The typical ECG waveform
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Fig. 2. The examples of real ECG recording of 2 different rhythm types
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Fig. 3. The proposed system of ECG recognition
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Fig. 4. The chosen Hermite functions for σ = 1 plotted as a function of time: a) n=0, b) b=1, c) n=3, d) n=14
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Fig. 5. The expanded QRS complex of ECG waveform (left,up) and its estimation using 6 (right, up), 9 (left, down),
15(right, down) Hermite basis functions
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Fig. 6. The distribution of the a0 (a) and a4 (b) Hermite coef£cients for different heart beats of the same patient
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Fig. 7. The representation of the data points by the clusters. The lines indicate equal membership values of the data
to the appropriate center
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Fig. 8. The fuzzy neural network structure corresponding to the modi£ed TSK system described by equation (11)
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Fig. 9. The original ECG data corresponding to the normal sinus rhythm of the heart beat
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Original ECG waveforms of the L−type rhythms
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Original ECG waveforms for the rhythms of R−type
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Original ECG waveforms for the rhythms of A−type
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Original ECG waveforms for the rhythms of V−type
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Original ECG waveforms for the rhythms of I−type
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Original ECG waveforms for the rhythms of E−type

Fig. 10. The original data ECG corresponding to six types of arrhythmia beats: L, R, A, V, I, E
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Tables 26

TABLE I

RESULTS OF MISCLASSIFICATIONS OF DIFFERENT RHYTHMS ON THE LEARNING AND TESTING DATA

Type Number of rhythms Misclassi£cation number Rate of misclassi£cation [%]
Learning Testing Learning Testing Learning Testing

N 1000 1500 13 24 1.3% 1.6%
L 700 500 25 55 3.57% 11%
R 600 500 2 5 0.33% 1%
A 484 418 28 38 5.79% 9.09%
V 500 500 12 18 2.4% 3.6%
I 272 200 3 3 1.1% 1.5%
E 55 50 3 2 5.45% 4.0%

Total 3611 3668 86 145 2.38% 3.95%


